Lomonosov Psychology Journal
ISSN 0137-0936
eISSN 2309-9852
En Ru
ISSN 0137-0936
eISSN 2309-9852

Article

Pronina A.S., Grigoryan R.K., Kaplan A.Ya. (2018). Objective eye movements during typing in P300 BCI: the effect of stimuli size and spacing. Moscow University Psychology Bulletin, 4, 120-134

Abstract

Relevance. Brain-computer interface (BCI) technology is widely employed in studies focused on possibility of substitution of human verbal and motor communication channels when such channels are lost due to stroke or trauma. One of the most promising examples of BCI technology is P300 BCI – a system based on P300 component of visual evoked potential. Visual stimulation plays a key role in P300 BCI concept, and it is thus important to explore the influence of visual stimuli environment on user’s eye movements and BCI performance.

Objective. The objective was to explore the influence of the main components of P300 BCI visual environment, namely matrix stimuli size and spacing, on the movements of user's eyes during typing, the accuracy of typing, and the amplitude and latency of P300 component.

Methods. Sixteen healthy subjects were recruited for the study. Each subject participated in five experimental sessions, where P300 BCI matrix stimuli size and spacing varied from 1.22 and 0.73 to 2.43 and 1.45 degrees of visual angle. During each experimental session, subjects were typing in a certain text sequence using the BCI while their eye movements and EEG were being recorded.

Results. We found that the stimuli size significantly affected certain characteristics of user’s eye movements. The stimuli size and spacing, however, had no significant effect on the accuracy of the typing and the amplitude and latency of P300 component.

Conclusions. The results of the study can prove to be beneficial to the development of efficient visual stimuli environments for P300 BCI.

Sections: Empirical studies;

Received: 08/15/2018
Accepted: 09/05/2018
Pages: 120-134
DOI: 10.11621/vsp.2018.04.120

Keywords: brain-computer interface; BCI; speller; P300; eye movements;

Available Online 01.12.2018

Pronina A.S., Grigoryan R.K., Kaplan A.Ya. (2018).  Objective eye movements during typing in P300 BCI: the effect of stimuli size and spacing. Moscow University Psychology Bulletin, 4, 120-134. Pic. 1.

Pic. 1.

Pronina A.S., Grigoryan R.K., Kaplan A.Ya. (2018).  Objective eye movements during typing in P300 BCI: the effect of stimuli size and spacing. Moscow University Psychology Bulletin, 4, 120-134. Pic. 2.

Pic. 2.

References

Allison, B.Z., Pineda, J.A. (2003). ERPs evoked by different matrix sizes: Implications for a brain computer interface (BCI) system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11, 2, 110–113. DOI: 10.1109/TNSRE.2003.814448

Basyul,I.A. (2017). Harakteristiki okulomotornoj aktivnosti operatora interfejsa «mozg—komp'yuter» na volne P300 v razlichnyh stimul'nyh situaciyah.Eksperimental'naya psihologiya[Experimental Psychology], 10, 1, 129—138.

Brunner, P., Joshi, S., Briskin, S. et al.(2010). Does the “P300” Speller Depend on Eye Gaze? Journal of Neural Engineering, 7, 5, 056013.

Dalmaijer, E.S., Mathôt, S., Van der Stigchel, S. (2014). PyGaze: an open-source, cross-platform toolbox for minimal-effort programming of eyetracking experiments.Behavior Research Methods, 46, 4, 913—921. DOI: 10.3758/s13428-013-0422-2

De Greef, T. (2009). Eye movement as indicators of mental workload to trigger adaptive automation. In: Proceedings of the 5th International Conference on Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience: Held as Part of HCI International (July 19-24, 2009, San Diego, CA). pp. 219—228.

Farwell, L.A., Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70, 6, 510—523. DOI: 10.1016/0013-4694(88)90149-6

Garcia, L., Lespinet-najib, V., Saioud, S. et al. (2015). Brain-computer interface: Usability evaluation of different P300 speller configurations: A preliminary study.  In I. Rojas, G. Joya, A. Catala (eds.) Advances in Computational Intelligence Pt I. Lecture Notes in Computer Science. Vol. 9094 (pp. 98—109). Berlin: Springer-Verlag.

Grigoryan,R.K., Krysanova,E.Yu., Kir'yanov,D.A., Kaplan,A.Ya. (2018). Zritel'nye stimuly dlya interfejsa mozg—komp'yuter na osnove zritel'nyh vyzvannyh potencialov: cvet, forma, podvizhnost'.Vestnik Moskovskogo universiteta. Ser. 16. Biologiya[Bulletin of Moscow University. Series 16. Biology],73,2,111—117.

Jacob, R.J.K. (1991). The use of eye movements in human-computer interaction techniques: what you look at is what you get. ACM Transactions on Information Systems, 9, 152—169. DOI: 10.1145/123078.128728

Kalika, D., Collins, L., Caves, K., Throckmorton, C. (2017). Fusion of P300 and eye-tracker data for spelling using BCI2000. Journal of Neural Engineering, 14, 5, 056010. DOI: 10.1088/1741-2552/aa776b

Kaplan,A.Ya. (2016). Nejrofiziologicheskie osnovaniya i prakticheskie realizacii tekhnologii mozg-mashinnyh interfejsov v nevrologicheskoj reabilitacii.Fiziologiya cheloveka[Human Physiology], 42, 1, 118—127.

Kim, M., Chae, Y., Jo, S. (2013). Hybrid EEG and eye movement interface to multi-directional target selection. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. EMBS, pp. 763—766.

Lazarou, I., Nikolopoulos, S., Petrantonakis, P.C. et al. (2018). EEG-based brain-computer interfaces for communication and rehabilitation of people with motor impairment: A novel approach of the 21st Century. Frontiers in Human Neuroscience, 12, 1, 1—18.

Marchitto, M., Benedetto, S., Baccino, T., Canas, J.J. (2016). Air traffic control: Ocular metrics reflect cognitive complexity. International Journal of Industrial Ergonomics, 54, 120—130. DOI: doi.org/10.1016/j.ergon.2016.05.010

Obeidat, Q., Campbell, T., Kong, J. (2013). The Zigzag Paradigm : A new P300-based brain-computer interface. In: Proceedings of 15th ACM International Conference on Multimodal Interaction (December 09-13, 2013, Sydney, Australia). pp. 205—212.

Obeidat, Q.T., Campbell, T.A., Kong, J. (2015). Introducing the Edges Paradigm : A P300 brain-computer interface for spelling written words. IEEE Transactions on Human-machine Systems, 45, 6, 727—738. DOI: 10.1109/THMS.2015.2456017

Pfabigan, D.M., Sailer, U., Lamm, C. (2015). Size does matter! Perceptual stimulus properties affect event-related potentials during feedback processing. Psychophysiology, 52, 9, 1238—1247. DOI: 10.1111/psyp.12458

Polich, J. (2007). Updating P300 : An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 10, 2128—2148. DOI: 10.1016/j.clinph.2007.04.019

Rezeika, A., Benda, M., Stawicki, P. et al. (2018). Brain-computer interface spellers: A review. Brain Sciences, 8, 4, 57. DOI: 10.3390/brainsci8040057

Salvaris, M., Sepulveda, F. (2009). Visual modifications on the P300 speller BCI paradigm. Journal of Neural Engineering, 6, 4, 046011.

Sellers, E.W., Krusienski, D.J., Mcfarland, D.J. et al. (2006). A P300 event-related potential brain-computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biological Psychology, 73, 3, 242—252. DOI: 10.1016/j.biopsycho.2006.04.007

Shishkin, S.L., Zhao, D.G., Isachenko, A.V., Velichkovsky, B.M. (2017). Gaze-and-brain-controlled interfaces for human-computer and human-robot interaction. Psychology in Russia: State of the Art, 10, 3, 120—137.

Townsend, G., LaPallo, B.K., Boulay, C.B. et al. (2010). A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clinical Neurophysiology, 121, 7, 1109—1120. DOI: 10.1016/j.clinph.2010.01.030

Whitney, D., Levi, D.M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15, 4, 160—168. DOI: 10.1016/j.tics.2011.02.005

For citing this article:

Pronina A.S., Grigoryan R.K., Kaplan A.Ya. (2018). Objective eye movements during typing in P300 BCI: the effect of stimuli size and spacing. Moscow University Psychology Bulletin, 4, 120-134