Lomonosov Psychology Journal
ISSN 0137-0936
eISSN 2309-9852
En Ru
ISSN 0137-0936
eISSN 2309-9852

The electrophysiological indices of vection illusion perception in virtual reality

Relevance. The study of the self-motion (“vection”) illusion is an important task for modern psychology and neuroscience due to the widespread use of virtual reality systems. The study of psychophysiological mechanisms of this phenomenon has particular importance as an example of intersensory interactions.

Objective. To study the psychophysiological mechanisms of the self-motion illusion in a virtual reality system using electroencephalography.

Methodology. Eleven healthy subjects took part in the experiment. The stimulation was a virtual opto-kinetic drum that rotated clockwise and counterclockwise around a vertical axis with angular velocities of 30, 45 and 60 angular deg/s. The duration of each rotation was 60 seconds. The subjects were presented with 18 rotations; there was a series with instructions for free viewing of the visual scene (3 speeds × 2 directions × 2 repetitions) and a series with instructions to fix the gaze in the center of the virtual scene (3 speeds ×2 directions × 1 repetition). After each rotation, the subjects filled out the “Simulator Sickness Questionnaire” and evaluated the intensity of the illusion on a 10-point scale. Stimulation was presented in the HTC Vive virtual reality helmet. Electroencephalogram recording during the observation of cylinder rotations was performed using Mitsar-EEG-10/70-201.

Results. Significant differences were found in the intensity of the illusion, the total score on the questionnaire, and the power of the alpha rhythm in the parietal zones, depending on the speed of rotation. The higher the rotational speed, the greater the values of these dependent variables. Large values for beta-rhythm power in the occipital areas were found in the series with fixed eyes, in the subjects with high values for the intensity of the illusion.

Conclusions. Differences were shown in the bioelectrical activity of the brain during the experience of the self-motion illusion, related to mechanisms of visual-vestibular integration and greater attention to the performance of the motor task of gaze fixation.

References

  1. Barabanshchikov, V. A., Belopol'skij, V. I. (2013). Stabil'nost' vidimogo mira. (in Russ)

  2. Berti, S., Haycock, B., Adler, J., & Keshavarz, B. (2019). Early cortical processing of vection-inducing visual stimulation as measured by event-related brain potentials (ERP). Displays, 58, 56–65.

  3. Dieterich, M., & Brandt, T. (2000). Brain activation studies on visual-vestibular and ocular motor interaction. Current Opinion in Neurology, 13, 1, 13–18.

  4. Ebenholtz, S. M., Cohen, M. M., & Linder, B. J. (1994). The possible role of nystagmus in motion sickness: a hypothesis. Aviation, space, and environmental medicine, 65, 11, 1032–1035.

  5. Feige, B., Scheffler, K., Esposito, F., Di Salle, F., Hennig, J., & Seifritz, E. (2005). Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. Journal of neurophysiology, 93, 5, 2864–2872.

  6. Goldman, R. I., Stern, J. M., Engel Jr, J., & Cohen, M. S. (2002). Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 13, 18, 2487.

  7. Graille C., & Rougeul-Buser A. (1996) Posterior parietal electrocortical (ECoG) ‘attention rhythms’ in macaque during a visually guided manual task. European Journal of Neuroscience Supplement, 9, 22.

  8. Harquel, S., Guerraz, M., Barraud, P. A., & Cian, C. (2020). Modulation of alpha waves in sensorimotor cortical networks during self-motion perception evoked by different visual-vestibular conflicts. Journal of Neurophysiology, 123, 1, 346–355.

  9. Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology, 3, 3, 203–220.

  10. Keshavarz, B., & Berti, S. (2014). Integration of sensory information precedes the sensation of vection: a combined behavioral and event-related brain potential (ERP) study. Behavioural brain research, 259, 131–136.

  11. Kleinschmidt, A., Thilo, K. V., Büchel, C., Gresty, M. A., Bronstein, A. M., & Frackowiak, R. S. (2002). Neural correlates of visual-motion perception as object- or self-motion. Neuroimage, 16, 4, 873–882.

  12. Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C., & Krakow, K. (2003). EEG-correlated fMRI of human alpha activity. Neuroimage, 19, 4, 1463–1476.

  13. Loomis, J. M., & Philbeck, J. W. (2008). Measuring spatial perception with spatial updating and action. In Carnegie Symposium on Cognition, 2006, Pittsburgh, PA, US. Psychology Press.

  14. Men'shikova, G. YA., & Kovalev, A. I. (2018). Rol' nistagmennyh dvizhenij glaz v formirovanii illyuzii dvizheniya sobstvennogo tela. Vestnik Moskovskogo universiteta. Seriya 14: Psihologiya, 4, 135–148. (in Russ)

  15. Men'shikova, G. YA., & Kovalyov, A. I. (2015). Vekciya v virtual'nyh sredah: psihologicheskie i psihofiziologicheskie mekhanizmy formirovaniya. Nacional'nyj psihologicheskij zhurnal, 4, 20, 91–104. (in Russ)

  16. Menshikova, G., Kovalev, A., Klimova, O., Chernorizov, A., & Leonov, S. (2014). Testing the vestibular function development in junior figure skaters using the eye tracking technique. Procedia–Social and behavioral sciences, 146, 252–258.

  17. Moser, M. B., & Moser, E. I. (1998). Distributed encoding and retrieval of spatial memory in the hippocampus. Journal of Neuroscience, 18, 18, 7535–7542.

  18. Palmisano, S., Barry, R. J., De Blasio, F. M., & Fogarty, J. S. (2016). Identifying objective EEG based markers of linear vection in depth. Frontiers in psychology, 7, 1205.

  19. Palva, S., & Palva, J. M. (2007). New vistas for α-frequency band oscillations. Trends in neurosciences, 30, 4, 150–158.

  20. Reason, J. T., & Brand, J. J. (1975). Motion sickness. Academic press.

  21. Scheeringa, R., Petersson, K. M., Oostenveld, R., Norris, D. G., Hagoort, P., & Bastiaansen, M. C. (2009). Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage, 44, 3, 1224–1238.

  22. Thilo, K. V., Kleinschmidt, A., & Gresty, M. A. (2003). Perception of self-motion from peripheral optokinetic stimulation suppresses visual evoked responses to central stimuli. Journal of neurophysiology, 90, 2, 723–730.

  23. Tosto, M. G., Hanscombe, K. B., Haworth, C. M., Davis, O. S., Petrill, S. A., Dale, P. S., & Kovas, Y. (2014). Why do spatial abilities predict mathematical performance? Developmental science, 17 (3), 462–470.

  24. Ventura, M., Shute, V., Wright, T. J., & Zhao, W. (2013). An investigation of the validity of the virtual spatial navigation assessment. Frontiers in psychology, 4, 852.

  25. Wróbel A., Hedström A., & Lindström S. (1998) Synaptic excitation of principal cells in the cat's lateral geniculate nucleus during focal epileptic seizures in the visual cortex. Actaneurobiologiaeexperimentalis. 58, 271–276.

Recieved: 05/09/2020

Accepted: 05/27/2020

Published: 06/22/2020

Keywords: vection; virtual reality; electroencephalogram; eye movements

Available online since: 22.06.2020

Issue 2, 2020