Lomonosov Psychology Journal
ISSN 0137-0936 (Print)
ISSN 2309-9852 (Online)
En Ru
ISSN 0137-0936 (Print)
ISSN 2309-9852 (Online)

Article

Menshikova G.Ya., Kovalev A.I. (2018). The role of optokinetic nystagmus in vection illusion perception. Moscow University Psychology Bulletin, 4, 135-148

Abstract

Relevance. It is one of very important tasks of modern neuroscience to investigate the psychological and psychophysiological mechanisms of body orientation processes. Particularly due to the growth in use of visualization and simulation technologies (virtual reality, projection displays, aircraft simulators). The application of such systems is often associated with mismatch between different sensory signals. One of the phenomena resulting from this mismatch is the self-motion illusion – the perception of own movement by a motionless person observing a moving visual stimulus occupying a large part of field of view.

Objective. Investigation the role of optokinetic nystagmus in self-motion illusion. The virtual optokinetic drum rotating at 30, 45 and 60 deg/s was used as a stimulus. The drum was presented using CAVE virtual reality system. 17 healthy participants took part in the experiment. The slow phases of nystagmus during self-motion illusion perception were analyzed. 

Results. The more the drum rotation speed, the more the illusion intensity and slow phases duration. Also the disturbances in slow phase realization led to increase the illusion intensity. The restoration of nystagmus reduced the illusion. Thus it was found that optokinetic nystagmus is a component of a human space orientation system and the nystagmus also adjusts the illusion perception. The effectiveness of application of CAVE virtual reality system in complicated cognitive processes investigation was proved.

Sections: Empirical studies;

Received: 10/18/2018
Accepted: 10/25/2018
Pages: 135-148
DOI: 10.11621/vsp.2018.04.135

Keywords: visual perception; vection; virtual reality; eye movements; optokinetic nystagmus;

Available Online 01.12.2018

Pic. 1. Menshikova G.Ya., Kovalev A.I. (2018). The role of optokinetic nystagmus in vection illusion perception. Moscow University Psychology Bulletin, 4, 135-148

Pic. 1.

Pic. 2. Menshikova G.Ya., Kovalev A.I. (2018). The role of optokinetic nystagmus in vection illusion perception. Moscow University Psychology Bulletin, 4, 135-148

Pic. 2.

Pic. 3. Menshikova G.Ya., Kovalev A.I. (2018). The role of optokinetic nystagmus in vection illusion perception. Moscow University Psychology Bulletin, 4, 135-148

Pic. 3.

References

Fernandez, C., Schmidt, R.M. (1962). Studies on habituation of vestibular reflexes. Effect of caloric stimulation in decorticated cats. Annals of Otology, Rhinology & Laryngology,71,2,299—320.

Fischer,M., Kornmüller,A. (1930). Optokinetisch ausgelöste Bewegungswahrnehmungen und optokinetischer Nystagmus.Journal für Psychologie und Neurologie, 41, 273—308.

Goodale, M.A., Milner, A.D., Jakobson, L.S., Carey, D.P. (1991). A neurological dissociation between perceiving objects and grasping them.Nature, 349, 154—156.

Kennedy, R., Lane, N., Kevin, S. et al. (1993). Simulator Sickness Questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 4, 203—220.

Kileny, P., Ryu, J.H., McCabe, B.F., Abbas, P.J. (1980). Neuronal habituation in the vestibular nuclei of the cat.Acta oto-laryngologica, 90(3—4), 175—183.

Kislyakov, V.A., Neverov, V.P. (1966). Reakciya glazodvigatel'noj sistemy na dvizhenie ob"ektov v pole zreniya. Optokineticheskij nistagm[The reaction of the oculomotor system to the movement of objects in sight.Optokinetic nystagmus]. Moscow: Nauka.

Kleinschmidt, A., Thilo, K., Buchel, C. et al. (2002). Neural correlates of visual-motion perceptionas object- or Self-motion.NeuroImage, 16, 873—882.

Kovalev, A.I., Men'shikova, G.Ya. (2015). Vekciya v virtual'nyh sredah: psihologicheskie i psihofiziologicheskie mekhanizmy formirovaniya. Nacional'nyj psihologicheskij zhurnal[National Psychological Journal],4,91—104.

Kowler, E. (1990). The role of visual and cognitive processes in the control of eye movement. In E. Kowler (ed.) Eye movements and their role in visual and cognitive processes(pp. 1—69). Amsterdam: Elsevier.

Levashov,M.M. (1984). Nistagmometriya v ocenke sostoyaniya vestibulyarnoj funkcii.In:Problemy kosmicheskoj biologii,Vol. 50. Leningrad: Nauka.

Menshikova, G., Kovalev, A., Klimova, O. et al. (2014). Testing the vestibular function development in junior figure skaters using the eye tracking technique. Procedia — Social and Behavioral Sciences, 146, 252—258.

Menshikova,G.Ya., Kovalev,A.I., Lunyakova,E.G. (2017). Vliyanie rasovoj prinadlezhnosti lica na vyrazhennost' effekta vzglyada-podskazki: metod ajtrekinga.Nacional'nyj psihologicheskij zhurnal[National Psychological Journal], 2, 46—58.

Menshikova, G., Kovalev, A., Klimova, O., Chernorizov, A. (2015). Eye movements as indicator of vestibular dysfunction. Perception, 44(8—9), 1103—1110.

Mit'kin, A.A., Kozlova, E.V., Sergienko, E.A., Yamshchikov, A.I. (1978). Nekotorye voprosy rannego ontogeneza zritel'nyh sensomotornyh funkcij. In: Dvizhenie glaz i zritel'noe vospriyatie[Eye movement and visual perception] (pp. 5—72). Moscow: Nauka.

Palmisano, S., Allison, R., Schira, M., Barry, R. (2015). Future challenges for vection research: definitions, functional significance, measures and neural bases. Frontiers Psychology, 6, 193, 1—15.

Previc, F.H., Liotti, M., Blakemore, C. et al. (2003). Functional imaging of brain areas involved in the processing of coherent and incoherent wide field-of-view visual motion. Experimental Brain Research, 131, 393—405.

Reason, J. (1978). Motion sickness adaptation: a neural mismatch model. Journal of the Royal Society of Medicine, 71(11), 819—829.

Romanov,V.Ya. (1973). Issledovanie svojstv zritel'nogo perceptivnogo processa metodom FOKN.In Yu.B. Gipperejter (ed.) Issledovaniya zritel'noj deyatel'nosti cheloveka[Studies of human visual activity] (pp. 42—69). Moscow: Izd-vo Mosk. un-ta.

Seno, T., Palmisano, S., Hiroyuki, I. (2011). Independent modulation of motion and vection aftereffects revealed by using coherent oscillation and random jitter in optic flow. Vision Research, 51(23—24), 2499—2508.

Van der Stee, F. (1998). Self-motion perception: Ph.D. thesis. Delft University of Technology.

Wertheim, A.H. (1994). Motion perception during self-motion - the direct versus inferential controversy revisited. Behavioral and Brain Sciences, 17, 2, 293—311.

For citing this article:

Menshikova G.Ya., Kovalev A.I. (2018). The role of optokinetic nystagmus in vection illusion perception. Moscow University Psychology Bulletin, 4, 135-148